关于自然常数e的快乐谜题,难倒不少专业数学从业者,看看你能解决哪个?
撰文 | Pradeep Mutalik编译| 哪吒
图片来源:James Round/Quanta Magazine
π是我们所熟悉的超越数,因为它无处不在,但是欧拉数e是如何超越普通数的呢?
在日常语言中,"transcendental"这个词指的是某件超乎寻常的事,是隐秘且难以理解的,具有近乎于魔法或神秘的力量。另一方面,在数学中,“transcendental”一词的含义较为平凡。它简单地描述了一类数——超越数——它们不可能是多项式方程的解,如ax3+bx2+cx+d=0,其中系数a, b, c, d都是有理数,x的最高次幂可以是任何正整数。正如伟大的数学家欧拉(Leonhard Euler)所说:“它们超越了代数方法的力量。”
然而,“transcendental”这个词的日常内涵对于两个最著名的超越数——普适常数π和e——来说是真实的。这两个数字确实神秘而强大,并表现出几乎魔法般的性质。它们在数学的许多分支中发挥着核心作用,在你最意想不到的时候出现在问题的解决方案中。在这两个数中,π对我们大多数人来说要熟悉得多。每个学生都知道它的近似值,并在计算中使用过它。但另一个,欧拉数(自然常数)e或2.71828…,相对来说人们就不太清楚了。事实上,查尔斯·厄米特 (Charles Hermite) 在1873年证明了e是第一个非构造的超越数。这里须明确指出“非构造”(non-constructed),因为在1850年,约瑟夫·刘维尔(Joseph Liouville)提供了第一个可证明的超越数的例子——但这个数是他为那个唯一目的而构造的,它并不是自然地出现在任何数学分支中。当然,这使得它与e有很大的不同,后者在数学中几乎无处不在。许多人知道e是自然对数的底,并且出现在复利和指数增长、衰减等理论中,但在这些领域中我们去计算时并没有明确遇到e。今天将讨论一些普普通通的问题,其中e会意外出现,使我们对它的普遍性有大概的了解。
像π和其他超越数一样,e有一个无限的小数表示——它的数字无穷无尽,没有任何规律可循。即便如此,e的前15位数字还是有一个好玩的规则模式,而且很容易记住,只需如下分组:2.7 1828 1828 45 90 45。当然,这种规律性纯粹是巧合——其余的数字是完全随机的。但e有几个惊人的特性,使它在所有数中独一无二。在这一系列的谜题中,你将了解到其中的一些属性,有一些是经典的,当然,还有我自己添加的。欧拉数e会在它们中自然地出现,即使你只是模糊地理解e出现的原因,也能欣赏它们。这种transcendental显灵的确切细节就留给那些受过必要数学训练的人。看看谁能用最简单的方式表达这种联系。
谜题1:分解任意取一个数,比如10,把它写成某些等大小的数的和,比如两个5,然后乘起来:5 × 5 = 25。现在可以把10写成3个,4个,5个或6个等大小的数的和,然后做同样的事情。在做乘积的时候会发生什么?
2 等分:5 × 5 = 25
3 等分:3.33 × 3.33 × 3.33 = 37.04
4 等分:2.5 × 2.5 × 2.5 × 2.5 = 39.06
5 等分:2 × 2 × 2 × 2 × 2 = 32
6 等分:1.67 × 1.67 × 1.67 × 1.67 × 1.67 × 1.67 = 21.43
可以看到乘积数增大,然后似乎达到最大值,之后开始减少。尝试对其他一些数(比如20和30)执行相同的操作。你会发现,在每种情况下都会发生同样的事情。这与数本身无关,而是由e的独特属性引起的。
a. 看看你是否能弄清楚乘积何时达到给定数的最大值,以及这与e有什么关系。如果遇到困难,请单击下面的提示。
(点击空白处查看内容)
▼
当每个等分的数值最接近e时,乘积达到最大值。
b. 对于数10,最大的乘积(39.06)比第二大乘积(37.04)大约 5.5%。 在不计算实际差异的情况下,你能否猜出小于100的正整数中,哪个数在最大乘积和第二大乘积之间的百分比差异最小? 为什么会这样呢?c. 这是一个经典问题,其解与e有关。你能解释一下e是如何进入答案的吗?
b. e是如何进入这个双人大礼堂的?
本文译自Where Transcendental Numbers Hide in Everyday Math 原文链接:https://www.quantamagazine.org/where-transcendental-numbers-hide-in-everyday-math-20211027/
有话要说...