当前位置:首页 > 教育 > 正文

温州二模较难题解析与深入探究(更好的方法)



温二模向来是浙江模拟卷中的天花板。昨天2022学年温二模考完,我们来看看几道有趣的温二模小题。

首先来说整体风格,延续了温二模重视立几、面面垂直【温二模必考】、题风复杂而不夸张、选择压轴喜欢考函数、解几喜欢结合两种圆锥曲线、导数非常复杂的风格,一看就是温中几位非常优秀的老师供了题。

第8题虽然难度不大,但考法新奇,特殊值带入有助于更快解题。

第9题延续了温二模喜欢考立体几何选择题压轴的风格,但这题主要靠猜测,证明中隐含的梅涅劳斯定理是一般高考生接触不到的。


第10题是一道较为常规的数列题,和昨天推文宁波十校的数列题类似,考察数列结合lnx基本放缩的裂项估计,详见:。

第16题是一道常见的向量题目,相信看过数海漫游推文的同学已经不陌生了,3Step法直接秒杀,值得注意的就是最后结果别忘了要除以根号2。

第17题延续了温二模考函数填空题压轴的传统,但这次稍微简单,大家注意到除以x^2后可以因式分解即可,和几十年前的IMO题目类似。


接下来进入本张试卷的导数题,第22题。

这道题,在难度上其实是够了,有点类似于近两年的高考题风格,复杂且不容易做出,作为温二模的压轴题我估计没有学生完整做出。事实上这两年的高考压轴题出的都一般般,所以这道题在模拟题中已经算是上乘了。

第一问的(2)本质上是一个Jensen不等式,但是直接带入证明也并不困难,注意到单调性即可。

第二问转换证明结论到x1=1显然成立,只需考虑a<1,于是问题变得容易了很多。


综上所述,温二模再次以新颖的面貌出现在我们面前,希望接下来的七十几天中,我们继续徜徉在优秀题目的海洋中。


你可能想看:

有话要说...

取消
扫码支持 支付码