当前位置:首页 > 时尚 > 正文

表面活性剂

表面活性剂 百科名片 表面活性剂

表面活性剂(surfactant),是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为憎水基团;亲水基团常为极性的基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等;而憎水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为离子型表面活性剂和非离子型表面活性剂等。

表面活性剂 定义及应用   表面活性剂是由两种截然不同的粒子形成的分子,一种粒子具有极强的亲油性,另一种则具有极强的亲水性。溶解于水中以后,表面活性剂能降低水的表面张力,并提高有机化合物的可溶性。   表面活性剂范围十分广泛(阳离子、阴离子、非离子及两性),为具体应用提供多种功能,包括发泡效果,表面改性,清洁,乳液,流变学,环境和健康保护。   表面活性剂在许多行业配方中被用作性能添加剂,如个人和家庭护理,以及无数的工业应用中:金属处理、工业清洗、石油开采、农药等。 组成   表面活性剂分子结构具有两亲性:一端为亲水基团,另一

表面活性剂在水中分子排列

端为疏水基团。 吸附性   溶液中的正吸附:增加润湿性、乳化性、起泡性;   固体表面的吸附:非极性固体表面单层吸附,   极性固体表面可发生多层吸附 结构   传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,目前一般认为只要在较低浓度下能显著改变表(界)面性

表面活性剂

质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。   无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。   根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。 分类 简介   表面活性剂的分类方法很多,根据疏水基结构进行分类,分直链、支链、芳

表面活性剂

香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。   人们一般都认为按照它的化学结构来分比较合适。即当表面活性剂溶解于水后,根据是否生成离子及其电性,分为离子型表面活性剂和非离子型表面活性剂。   按极性基团的解离性质分类   1、阴离子表面活性剂:硬脂酸,十二烷基苯磺酸钠   2、阳离子表面活性剂:季铵化物   3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型   4、非离子表面活性剂:脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 阴离子表面活性剂    1、肥皂类   系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳

表面活性剂肥皂

的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析。   碱金属皂:O/W   碱土金属皂:W/O   有机胺皂:三乙醇胺皂    2、硫酸化物RO-SO3-M   主要是硫酸化油和高级脂肪醇硫酸酯类。脂肪烃链R在12~18个碳之间。   硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油。   高级脂肪醇硫酸酯类有十二烷基硫酸钠(SDS、月桂醇硫酸钠)   乳化性很强,且较稳定,较耐酸和钙、镁盐。在药剂学上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶。    3、磺酸化物R-SO3 - M   属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。   常用品种有:二辛基琥珀酸磺酸钠(阿洛索-OT),十二烷基苯磺酸钠,甘胆酸钠 阳离子表面活性剂   该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。   常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂   这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。    1、卵磷脂:是制备注射用乳剂及脂质微粒制剂的主要辅料    2、氨基酸型和甜菜碱型:   氨基酸型:R-NH+2-CH2CH2COO-   甜菜碱型:R-N+(CH3)2-COO—。   在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂    1.脂肪酸甘油酯:单硬脂酸甘油酯;   HLB为3~4,主要用作W/O型乳剂辅助乳化剂。    2.多元醇   蔗糖酯:HLB(5~13)O/W乳化剂、分散剂   脂肪酸山梨坦(Span) :W/O乳化剂   聚山梨酯(Tween) :O/W乳化剂    3.聚氧乙烯型:Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯)    4.聚氧乙烯-聚氧丙烯共聚物:Poloxamer   能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂 应用 概述   表面活性剂由于具有润湿或抗粘、乳化或破乳、起泡或消泡以及增溶、分散、洗涤、防腐、抗静电等一系列物理化学作用及相应的实际应用,成为一类灵活多样、用途广泛的精细化工产品。表面活性剂除了在日常生活中作为洗涤剂,其他应用几乎可以覆盖所有的精细化工领域。 1.增溶   要求:C>CMC ( HLB13~18)    临界胶束浓度 (CMC):表面活性剂分子缔合形成胶束的最低浓度。当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构。   增溶体系为热力学平衡体系;   CMC越低、缔合数越大,增溶量(MAC)就越高;   温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度   Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点, Krafft点越高,其临界胶束浓度越小   昙点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点。在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高。 2.乳化作用   亲水亲油平衡值(HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力。根据经验,将表面活性剂的HLB值范围限定在0-40,非离子型的HLB值在0-20。   混合加和性:HLB=(HLBa Wa+HLBb /Wb) / (Wa+Wb)   理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7   HLB:3-8 W /O型乳化剂:Span;二价皂   HLB:8-16 O/W型乳化剂:Tween;一价皂 3.润湿作用   要求:HLB:7-9。   使用表面活性剂可以控制液、固之间的润湿程度。农药行业中在粒剂及供喷粉用的粉剂中,有的也含有一定量的表面活性剂,其目的是为了提高药剂在受药表面的附着性和沉积量,提高有效成分在有水分条件下的释放速度和扩展面积,提高防病、治病效果。   在化妆品行业中,做为乳化剂是乳霜、乳液、洁面、卸妆等护肤产品中不可或缺的成分。 4.助悬作用   在农药行业,可湿性粉剂、乳油及浓乳剂都需要有一定量的表面活性剂,如可湿性粉剂中原药多为有机化合物,具有憎水性,只有在表面活性剂存在的条件下,降低水的表面张力,药粒才有可能被水所润湿,形成水悬液; 5.起泡和消泡作用   表面活性剂在医药行业也有广泛应用。在药剂中,一些挥发油脂溶性纤维素、甾体激素等许多难溶性药物利用表面活性剂的增溶作用可形成透明溶液及增加浓度;药剂制备过程中,它是不可缺少的乳化剂、润湿剂、助悬剂、起泡剂和消泡剂等。 6.消毒、杀菌   在医药行业中可作为杀菌剂和消毒剂使用,其杀菌和消毒作用归结于它们与细菌生物膜蛋白质的强烈相互作用使之变性或失去功能,这些消毒剂在水中都有比较大的溶解度,根据使用浓度,可用于手术前皮肤消毒、伤口或粘膜消毒、器械消毒和环境消毒; 7.抗硬水性   甜菜碱表面活性剂对钙、镁离子均表现出非常好的稳定性,即自身对钙、镁硬离子的耐受能力以及对钙皂的分散力。在使用过程中防止钙皂的沉淀,提高使用效果。 8.增粘性及增泡性   表面活性剂有对改变溶液体系的作用,增大粘度变稠或增大体系的泡沫,在一些特除的清洗、开采行业有广泛的应用。 9.去垢、洗涤作用   去除油脂污垢是一个比较复杂的过程,它与上面提到的润湿、起泡等作用均有关。   最后要说明的是,表面活性剂起作用,并不单单是因为某一方面的作用,很多情况下是多种因素共同作用。如在造纸工业中可以用作蒸煮剂、废纸脱墨剂、施胶剂、树脂障碍控制剂、消泡剂、柔软剂、抗静电剂、阻垢剂、软化剂、除油剂、杀菌灭藻剂、缓蚀剂等。 历史 概述   ①公元前2500年——1850年 羊油和草木灰制造肥皂   羊油——三羧酸酯简称三甘酯,经碱水解→羧酸盐+单甘酯+二甘酯+甘油   19世纪中叶   一方面肥皂开始实现工业化大生产,另一方面,也出现了化学合成的表面活性剂   ②土耳其红油的出现:   土耳其红油即蓖麻油与硫酸反应的产物,蓖麻油为蓖麻油酸的三甘酯   深度磺化,耐酸耐硬水   ③19世纪初,矿物原料制备洗涤剂   石油工业的发展→石油硫酸(绿油)   蜡和茶的磺化混合物,溶于酸中,呈绿黑色,用碱中和制得。   石油磺酸皂具有良好的水溶性,称绿钠(第一个矿物原料制得的洗涤剂)   第一次世界大战期间,油脂出现   煤炭产量→煤化工业发→短链烷基、奈磺酸盐类表面活性剂   如丙基奈磺酸盐、丁基奈磺酸盐   1920——1930 脂肪醇硫酸化→烷基硫酸盐   20世纪30年代,长链烷基、苯基出现于美国   第一次世界大战后,德国开发乙二醇衍生物,如聚乙二醇 衍生物产品,聚乙二醇与各种有机化合物(包括醇、酸、酯、胺、酰胺)等结合,形成多种优良性能的非离子表面活性剂。   表面活性剂和合成洗涤剂形成一门工业得追溯到本世纪30年代,以石油化工原料衍生的合成表面活性剂和洗涤剂打破了肥皂一统天下的局面。经过60余年的发展,1995年世界洗涤剂总产量达到4300万吨,其中肥皂900万吨。据专家预测,全世界人口从2000年到2050年将翻一番,洗涤剂总量将从5000万吨增加到12000万吨,净增1.4培,这是一个令人鼓舞的数字。   中国的表面活性剂和合成洗涤剂工业起始于50年代,尽管起步较晚,但发展较快。1995年洗涤用品总量已达到310万吨,仅次于美国,排名世界第二位。其中合成洗涤剂的生产量从1980年的40万吨上升到1995年的230万吨,净增4.7倍,并以年平均增长率大于10%的速度增长。据中国权威部门预测,2000年洗涤用品总量将达到360万吨,其中合成洗涤剂将达到65.5万吨。其中产量超万吨的表面活性剂品种计有:直链烷基苯磺酸钠(LAS)、脂肪醇聚氧乙烯醚硫酸钠(AES)、脂肪醇聚氧乙烯醚硫酸铵(AESA)、月桂醇硫酸钠(K12或SDS)、壬基酚聚氧乙烯(10)醚(TX-10)、平平加O、二乙醇酰胺(6501)硬脂酸甘油单酯、木质素磺酸盐、重烷基苯磺酸盐、烷基磺酸盐(石油磺酸盐)、扩散剂NNO、扩散剂MF、烷基聚醚(PO-EO共聚物)、脂肪醇聚氧乙烯(3)醚(AEO-3)等。   表面活性剂的化学结构与性能的关系   1.亲疏平衡值与性能之间的关系   H·L·B值:表示表面活性剂的亲水疏水性能   (Hydrophile-Lipophile Balance)   表面活性剂要呈现特有的界面活性,必须使疏水基和亲水基之间有一定的平衡。   石蜡HLB值=0(无亲水基) 聚乙二醇HLB值=20(完全亲水)   对阴离子表面活性剂,可通过乳化标准油来确定HLB值。   HLB值 15~18 13~15 8~8 7~9 3.5~6 1.5~3   用途 增溶剂洗涤剂 油/水型乳化剂 润湿剂 水/油乳化剂 消泡剂   HLB值可作为选用表面活性剂的参考依据。   3. 疏水基种类与性能   疏水基按应用分四种   (1) 脂肪烃:   (2) 芳香烃:   (3) 混合烃:   (4) 带有弱亲水性基   (5) 其他:全氟烃基   疏水性大小:(5)>;(1)>(3)>;(2)>;(4)   3.亲水基的位置与性能   末端:净洗作用强,润湿性差;中间:相反。   4.分子量与性能   HLB值、亲水基、疏水基相同,分子量小,润湿作用好,去污力差;   分子量大,润湿作用差,去污力好。   5.浊点   对非离子表面活性剂来说,亲水性取决于醚键的多少,醚与水分子的结合是放热反应。   当温度↑,水分子逐渐脱离醚键,而出现混浊现象,刚刚出现混浊时的温度称浊点。此时表面活性剂失去作用。浊点越高,使用的温度范围广。   表面活性剂发展方向 1.烷基磷羧酸盐(AEC)工业化制造   随着科技飞速发展和现代文盟的不断进步,人们对表面活性剂使用要求也越来越高,即温和、易生物降解和多功能性,强调使用安全、生态保护和提高效率。烷基醇醚羧酸盐(AEC)是8O年代以来,发达国家积极研究开发的优质表面活性剂热点品种,它与烷基多苷和醇醚磷酸单酯同被称为“表面活性剂90年代的绿色品种”。   烷基醚羧酸盐的生产。一般采用以脂肪醇或烷基酚为原料,经乙氧基化和羧甲基化,制备AEC和APEC。烷基醚羧酸盐在化学结构上与皂类似,在疏水基和亲水基之间,嵌入一定加成数环氧乙烷,从而使其兼有阴离子和非离子表面活性剂中许多优良性能,成为多功能性品种。它在金属加工用方面,效果比相应的醇(酚)醚表面活性剂更好,它具有:   (1)对皮肤和眼的刺激性很小。   (2)清洗性能,受pH值和温度影响较小。   (3)对酸、碱、氯较为稳定。   (4)生物降解性能优异。

图1 表面活性剂结构示意图

烷基醚羧酸盐国内的应用市场还远远落后于发达国家,随着环保意识的不断加强和人民物质文化水平的不断提高,这类集温和、易生物降解和多功能性于一身的表面活性剂,在金属加工领域内,将发挥更大作用。 2.新一代表面活性剂Gemini   目前已经合成的低聚表面活性剂有二聚体、三聚体和四聚体等,其中最引人注目的是二聚体,结构示意图见图1,二聚表面活性剂最早被合成于1971年[4-5],后因其结构上的特点而被形象地命名为Gemini(英文是双子星之意)表面活性剂。   表面活性剂Gemini(或称dimeric)是由两个单链单头基普通表面活性剂在离子头基处通过化学键联接而成,因而阻抑了表面活性剂有序聚集过程中的头基分离力,极大地提高了表面活性。与当前为提高表面活性而进行的大量尝试,如添加盐类、提高温度或将阴离子表面活性剂与阴离子表面活性剂混合相比较,Gemini表面活性剂是概念上的突破,因而被誉为新一代的表面括性剂。   在Gemini表面活性剂中,两个离子头基是靠联接基团通过化学键而连接的,由此造成了两个表面活性剂单体离子相当紧密的连接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链问的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱,这就是Gemlrd表面活性剂和单链单头基表面括性剂相比较,具有高表面括性的根本原因。另一方面。在两个离子头基问的化学键联接不破坏其亲水性,从而为高表面活性的C~mini表面活性剂的广泛应用提供了基础。通过化学键联接方法提高表面活性和以往通常应用的物理方法不同,在概念上是一个突破。

图2 炔醇类Gemini表面活性剂

Genfini表面活性剂的优良性质:   实验表明,在保持每个亲水基团联接的碳原子数相等条件下,与单烷烃链和单离子头基组成的普通表面活性剂相比,离子型Gemini表面活性剂具有如下特征性质:   (1)更易吸附在气/液表面,从而更有效地降低水溶液表面张力。   (2)更易聚集生成胶团。   (3)Gemini降低水溶液表面张力的倾向远大于聚集生成胶团的倾向,降低水溶液表面张力的效率是相当突出的。   (4)具有很低的Krat~相转移点。   (5)对水溶液表面张力的降低能力和降低效率而言,Gemini和普通表面活性剂尤其是和非离子表面活性剂的复配能产生更大的协同效应。   (6)具有良好的钙皂分散性质。   (7)在很多场合,是优良的润湿剂。   从理论上讲,在极性头基区的化学键合阻抑了原先单链单头基表面活性荆彼此头基之间的分离力,因而必定增强碳链之间的结合。实验证明这是提高表面活性的一个重要突破,而且为实际应用开辟了新的途径。另一方面,由于键合产生的新分子几何形状的改变,带来了若干新形态的分子聚集体,这大大丰富了两亲分子自组织现象,通过揭示新分子结构和自组织行为间的联系有助于深刻认识两亲分子自组织机理。为此Gemini表面活性剂正在成为世界胶体和界面科学领域各主要小组的研究方向。 3.AB型嵌段高分子表面活性剂   涂料中颜填料的分散先后使用过聚磷酸盐、硅酸盐、碳酸盐等无机分散剂,传统小分子表面活性剂和聚羧酸盐、聚丙酸酸盐等高分子化合物。高分子化合物主要利用空间位阻使颜填料颗粒稳定,效果好于小分子表面活性剂的静电排斥作用。研究表明,在众多类型的高分子分散剂中,效果最好、效率最高的是AB型嵌段高分子表面活性剂。从分子结构上看,AB型嵌段高分子就是超大号的表面活性剂,A嵌段和B嵌段分别类似于表面活性剂的亲水头基和疏水尾链。AB嵌段高分子表面活性剂在颜填料表面采取尾型吸附形态,A嵌段是亲颜料的锚固基团,B嵌段是亲溶剂的溶剂化尾链。A嵌段可以是酸、胺、醇、酚等官能团,通过离子键、共价键、配位键、氢键及范德华力等相互作用吸附在颗粒表面,由于含有多个吸附点,可以有效地防止分散剂分子脱附,使吸附紧密且持久。B嵌段可以是聚醚、聚酯、聚烯烃、聚丙烯酸酯等基团,分别适用于极性和非极性溶剂。典型的AB嵌段型高分子表面活性剂结构如图3所示。稳定颗粒主要依靠B嵌段形成的吸附层产生的空间位阻作用,所以对作为溶剂化尾链的B嵌段的长度和均一性有极高的要求,希望可以形成厚度适中且均一的吸附层,如果B段过长,可能会起架桥作用,引起分散体系黏度增加,甚至絮凝沉淀。通常认为位阻层的厚度为20nm时,可以达到最好的稳定效果。

图3 AB嵌段型高分子表面活性剂

  合成分子结构明确和相对分子质量可控的AB型嵌段高分子表面活性剂是涂料分散助剂的发展方向,这需要用到受控聚合技术。基团转移聚合(GTP)、原子转移游离基聚合(ATRP)、硝酰基聚合(NMP)和可逆加成分裂链段转移聚合(RAFT)是当今最常用的受控聚合技术,利用这些技术,选用合适的方法和设备可得到想要的聚合物结构,可以选择不同的单体,按设计的次序进行排列,最终合成特定结构、相对分子质量分布窄、近单分散的聚合物,如果采用常规的方法,即使花大量的时间、精力、材料也无法做到这样。目前仅有BYK、Ciba、Rhodia等少数几个公司拥有受控聚合技术。深圳海川公司正在开发的新型分散剂也是AB型嵌段高分子表面活性剂。 4.Bola型表面活性剂   Bola型表面活性剂是由两个极性头基用一根或多根疏水链连接键合起来的化合物,它因形似南美土著人的一种武器Bola(一根绳子的两端各连接一个球)而得名,最简单的Bola型表面活性剂结构如图1所示。当连接基团的数量和方式不同时,Bola化合物根据分子形态可划分为3种类型,即单链型、双链型和半环型。由于分子链的两端同时存在2个头基,容易产生分子间相互作用,或者粒子间架桥作用,从而使分散体系性能有所不同。涂料体系中用到的ABA型高分子分散剂和缔合型增稠剂就属于Bola型表面活性剂,但是分子体积要比普通Bola表面活性剂大很多,属于高分子类型,相对分子质量通常为5000~30000。缔合型增稠剂可以克服传统增稠剂流动性低、流平性差、刷痕重和辊涂易飞溅等缺陷,是水性涂料助剂领域最重要的发展之一,聚氨酯缔合型增稠剂是一种疏水基团改性的乙氧基聚氨酯水溶性聚合物,属于非离子型缔合增稠剂。聚氨酯缔合型增稠剂以其优异的流平性能而成为高档建筑乳胶涂料不可取代的流变学助剂,其分子结构与增稠原理完全不同于传统增稠剂,其流变学特性也表现出与众不同的特点。缔合型增稠剂结构特点是疏水基封端,它由疏水基团、亲水链和聚氨酯基团3部分组成。典型的缔合型增稠剂如图4所示。

图4 Bola型大分子表面活性剂

  分子两端的疏水基团起缔合作用,相当于Bola型表面活性剂的2个端头基,是增稠的决定因素,通常是油基、十八烷基、十二烷苯基、壬酚基等。亲水链相当于Bola型表面活性剂的连接链,能提供化学稳定性和黏度稳定性,常用的是聚醚,如聚氧乙烯及其衍生物。缔合型增稠剂的分子链是通过聚氨酯基团来扩展的,所用聚氨酯有IPDI、TDI和HMDI等[9]。这样的分子结构使缔合型增稠剂分子可以像大分子表面活性剂一样形成胶束,亲水端与水分子以氢键缔合,疏水端与乳液粒子、表面活性剂等的疏水结构吸附缔合在一起,在水中形成立体网状结构,达到增稠的效果。 5.Dendrimer型表面活性剂   Dendrimer就是树枝状大分子,它是从一个中心核分子出发,由支化单体逐级扩散伸展开来的结构,或者由中心核、数层支化单元和外围基团通过化学键连接而成的。目前已经有聚醚、聚酯、聚酰胺、聚芳烃、聚有机硅等类型。树枝状大分子的特性是其分子结构规整,分子体积、形状和末端官能团可在分子水平上设计与控制,因此成为高分子学科的热门课题。按照需求对其端基进行改性,就得到相应的树枝状大分子表面活性剂。树枝状大分子也引起涂料界的关注,开发出该种类型的分散剂、交联剂和专用树脂等。树枝状表面活性剂用作涂料分散剂有两方面优势,首先,通过对其端基修饰,可以产生多个颜料亲和基团,加强与颜料的相互作用。其次,由于分子结构一致,且形状近似椭球形,在分散体系中比较容易获得较低黏度。超支化聚氨酯用聚乙二醇或环氧丙烷共聚物改性,是一种新型的高固体分、溶剂性或水性涂料的颜料分散剂。以商品化的超支化聚酯、聚酯-酰胺、聚乙烯亚胺为骨架,加以改性开发的核-壳型颜料锚固机制的分散剂,其优点是在低黏度下具有颜料分散稳定性。 6.低泡或无泡表面活性剂   低泡或无泡表面活性剂就是在原有的表面活性剂基础上进行改性,使其原有的发泡基团失去或降低发泡性,也有用异构醇加EO和PO进行嵌段来调节泡沫大小生产而成的。目前市场有低泡表面活性剂LT-601,无泡表面活性剂8550、8551。 双子(Gemini)表面活性剂   双子(Gemini)表面活性剂的定义是通过连接基团将两个两亲体在头基处或仅靠头基处连接(键合)起来的化合物。 双子表面活性剂的结构   1,双子表面活性剂都具有两个疏水链和亲水头基;   2,链接基团可以是短链基团;可以是刚性基团,也可以是柔性基团,可以是亲水集团,也可以是疏水基团。   3,亲水头基可以是阴离子的(磺酸盐,硫酸盐,羧酸盐)也可以是阳离子的(铵盐),还可以是非离子的(糖,聚醚)。   4,目前报道的双子表面活性剂大部分是对称的结构,不对称结构的双子表面活性剂也有报道。   5,还有关于合成多亲水头基和疏水链结构的表面活性剂的报道。 双子表面活性剂的应用   1:分子结构决定性能,而性能又决定其应用范围。双子表面活性剂的独特结构决定了它有独特的性能,独特的性能使得它有特殊的应用。例如,在化妆品中,低的cmc意味着双子表面活性剂比普通的表面活性剂对皮肤的刺激性更小。这是因为皮肤刺激性来源于非胶束化的普通活性剂,cmc值较低意味着在溶液中的单基表面活性剂(monoric surfactant)少。双子表面活性剂cmc值较低表明它比普通活性剂在更低浓度下就能溶解不溶于水的物质,因为仅当溶液浓度超过cmc时溶解才会发生并且使不溶于水的物质进入胶束中而被溶解。   2:与普通活性剂相比,双子表面活性剂在溶液界面的吸附能力大100—1000倍。这意味着双子表面活性剂比普通活性剂效率更高。例如,降低溶液的表面张力、起泡或形成乳液、微乳液所需的双子表面活性剂的浓度比普通活性剂的浓度更低。 双子表面活性剂的定义   通过化学键将两个或两个以上的同一或几乎同一的表面活性剂单体,在亲水头基或靠近亲水头基附近用联接基团将这两亲成份联接在一起,形成的一种表面活性剂称为双子表面活性剂。   该类表面活性剂有阴离子型、非离子型、阳离子型、两性离子型及阴 - 非离子型、阳- 非离子型等。 双子表面活性剂的合成及在制革业中的应用   1991年,美国Emory大学的Menger等合成了以刚性间隔基联接离子头基的双烷烃链表面活性剂,并起名为“Gemini表面活性剂”,即双子表面活性剂[1]。双子表面活性剂特殊的结构决定它比传统表面活性剂具有更优良的性能。它具有两个亲水基和疏水基,通过联接基团将两部分连接,联接基团有化学键作用,降低了两极性间的静电排斥力及其水化层间的作用力,使得双子表面活性剂具有低CMC特性。与单烷烃链和单离子头基组成的普通表面活性剂相比,双子表面活性剂具有如下特征性质[2]: (1)易吸附在气/液表面,有效地降低水的表面张力; (2)易聚集生成胶团,有更低的临界胶束浓度; 3)具有很低的Kraff点 (4)与普通表面活性剂间的复配能产生更大的协同效应; (5)具有良好的钙皂分散性能; (6)优良的润湿性能。 目前,双子表面活性剂已经受到世界各国科学家的青睐,并掀起了一股新的研究热潮。本文综述了当前各类双子表面活性剂的合成方法,简要介绍了双子表面活性剂在制革业中的应用状况,并探讨了双子表面活性剂目前的发展趋势。  2双子表面活性剂的合成中国研究双子表面活性剂起步较晚,因此产品开发、性能研究及应用与国外相比尚有一定的差距。具有新颖结构的双子表面活性剂系列化合物的合成研究更受到重视。 2.1阴离子双子表面活性剂从1988年起,日本Osaka大学的Okahara研究小组[3]合成了一系列阴离子型双子表面活性剂。由环氧氯丙烷与二醇(或二酚)反应制得的二环氧丙基醚作为联接链。之后又根据需要与溴乙酸、氯磺酸、丙磺内酯或磷酸反应分别得到了硫酸酯盐、磺酸盐、羧酸盐、磷酸盐型的双子表面活性剂。双子阴离子型表面活性剂的种类很多,主要有硫酸酯盐、磺酸酯、羧酸酯、磷酸酯型。 2.1.1硫酸酯盐型(-OSO3M)和磺酸盐型(-SO3M)硫酸酯盐型表面活性剂主要包括高级脂肪醇硫酸酯盐和高级脂肪醇醚硫酸酯盐,此外还有硫酸化油、硫酸化脂肪酸和硫酸化脂肪酸酯等。硫酸酯盐型表面活性剂具有良好的发泡能力和洗涤性能,在硬水中性能稳定,水溶液呈中性或微碱性。其合成方法是先用相转移催化法合成二环氧化合物,再用长链的脂肪醇与二环氧化合物反应生成低聚二醇,最后在一定条件下,低聚二醇与氯磺酸或丙磺内酯反应生成硫酸酯盐或磺酸盐型双子表面活性剂,但其产率并不高[4]。 为克服产率和产品纯度的缺陷,姚志刚等[5]采用另一条合成路线,用牛磺酸钠与二溴乙烷反应得到乙二胺二乙磺酸钠,然后与油酰氯反应得到N,N′-双油酰基乙二胺二乙磺酸钠,大大提高了产率和纯度。贾卫红等[6]以脱氢枞胺、α,ω-二溴代烷和2-溴乙基磺酸钠为原料制备了4种松香基磺酸盐双子表面活性剂N,N′-二乙基磺酸钠-N,N′-二脱氢枞基-α,ω-二胺。用傅里叶变换红外光谱、核磁共振波谱对系列目标产物的结构进行了表征,得出这四种表面活性剂具有良好的润湿性能和较低的CMC,其表面活性随分子结构中连接的亚甲基链长度的增加而增强。 硫酸酯盐型和磺酸盐型双子表面活性剂是目前较为常见的阴离子型双子表面活性剂,较适合工业化大规模生产,但该工艺的缺点是耗时长,合成过程的含硫化合物使用量大,会对环境造成一定的危害。因此,上述两种双子型表面活性剂的合成工艺条件还需要进一步优化。 2.1.2羧酸盐型(-COOM)最早合成的羧酸盐型表面活性剂是采用乙二胺、辛基氯化物和氯乙酸为原料合成羧酸盐型双子表面活性剂,通过此基础反应,改变碳链长度和连接基长度,可以合成一系列化合物。它们具有很高的金属螯合性,耐硬水和良好的钙皂分散能力[7]。关于羧酸盐型双子表面活性剂合成的报道目前在国内并不多见。杜恣毅等[8]合成了一种含对苯氧基联接链的羧酸盐双子表面活性剂,研究了胶团化特性,结果表明该羧酸盐双子表面活性剂具有很低的CMC值和表面张力。其作为一种新型的洗涤添加剂将会有着很大的开发和应用潜力。 2.1.3磷酸酯型(-OPO3M)磷酸酯双子表面活性剂的合成方法主要有两种:一是在三乙胺和四氢呋喃存在下,将二元醇与POCl3反应,搅拌下滴加脂肪醇,然后进行水解脱氯,最后用NaOEt/EtOH处理;另一种是把长链的醇磷酸化,生成磷酸单酯,再与季胺碱反应得到磷酸酯季胺盐,然后引入联接基团,酸化。近年来用磷酸或者多聚磷酸做磷酰化剂合成磷酸酯的研究引起了人们的关注。 与用三氯氧磷、三氯化磷或者五氧化二磷做酰化剂的经典工艺相比,这种方法原料稳定性高,毒性低,工艺相对简单。郑帼[9]研究了双子磷酸酯表面活性剂的最佳合成工艺:以P2O5与正癸基低聚二醇为原料合成双子磷酸酯表面活性剂,这种表面活性剂具有优良的稳泡、乳化性能较高,并且合成工艺比较简单,反应条件温和。其中反应温度、投料比n(正癸基缩水甘油醚∶乙二醇)等工艺条件的优化,催化剂的选择等因素是磷酸酯型双子表面活性剂合成的关键问题,还有待于更进一步深入研究。 2.2阳离子双子表面活性剂1991年Menger和Littan[10]合成了3种具有刚性联接基团的双子表面活性剂,其中有一种就是阳离子型,以二溴取代烷烃和长碳链二甲基叔胺反应制得,联接基团为苯环。目前合成的双子阳离子表面活性剂主要是双季铵盐表面活性剂,它们生物降解性好、毒性低。合成阳离子双季铵盐表面活性剂的方法主要有两种[11]:一种是以二溴取代烷烃和单长链烷基二甲基叔胺(烷基为直链烷基)在无水乙醇中加热回流,进行季铵化反应;另一种是以1-溴代长链烷烃和N,N,N′,N′-四甲基烷基二胺在无水乙醇中加热回流,进行季铵化反应。 第一种方法适用于二溴代烷烃非常活泼且易得的情况。但由于二溴代烷烃的价格昂贵,所以多选择第二种方法来合成双季铵盐表面活性剂[12]。溴代长链烷烃和N,N,N′,N′-四甲基烷基二胺以无水乙醇做溶剂,加热回流2~3天,减压蒸馏除去溶剂,重结晶提纯,即可得到产品。 如陈凤生等[13]以N,N-二甲基丙二胺分别与十二酸、十四酸、十六酸和十八酸反应得到酰胺基叔胺,再制成盐酸盐,盐酸盐与环氧氯丙烷在水溶剂中合成了相应的含酰胺基双子离子表面活性剂。采用红外光谱、质谱、元素分析、核磁共振波谱进行了结构表征,并测定了表面化学性能,该含酰胺基双子阳离子表面活性剂具有很强的表面吸附和胶束生成能力。 目前关于阳离子双子表面活性剂的研究报道不多。原因是对此合成机理的理论研究、合成方法及工艺条件研究还不很成熟,有待于更深入研究。2.3非离子双子表面活性剂国内对非离子双子表面活性剂的合成研究还不多,更多的仅仅是参考引用国外的研究成果[14]。 黄丹等[15]用月桂醇聚氧乙烯醚(3)、顺丁烯二酸酐和反丁烯二酸为主要原料,合成了月桂醇聚氧乙烯醚(3)羧酸盐对称型琥珀酸双酯双子表面活性剂。测得其洗净率为99.96%。作为一种洗涤、漂白助剂,双子非离子表面活性剂的研发具有重要的理论意义和应用价值。 2.4两性双子表面活性剂两性离子型双子表面活性剂的报道较少。Renouf等[16]首次设计合成了两个端基为两性离子的双子表面活性剂,其表面活性比头基相同的双子表面活性剂强。王孝科等[17]以十二烷基叔胺、环氧氯丙烷和氯乙酸为原料,利用两步法合成了双季铵羧甲基钠盐新型两性双子表面活性剂,采用元素分析、红外光谱对其结构进行了表征,考察了反应条件对合成反应收率的影响。发现其产物收率优于季铵盐阳离子双子表面活性剂及传统的两性表面活性剂。  3双子表面活性剂在制革中的应用 3.1高效乳化剂、增溶剂和脱脂剂双子表面活性剂具有较高的 表面活性,其作为乳化剂乳化效率高。在用量减少的情况下,能达到甚至超过单链表面活性剂常规用量的效果。极低的CMC值使得双子表面活性剂在很低的浓度下即可形成胶束而达到增溶的效果。因此,双子表面活性剂可以用作高效增溶剂、脱脂剂和乳化剂。少量的双子表面活性剂就可使生皮中的油脂、污垢很好的被乳化分散而除去[18]。 3.2预鞣和复鞣填充剂 在皮革鞣制过程中,由于双子表面活性剂特殊的结构和性质,具有能与皮胶原上的结合点快速结合的特点,可防止鞣剂与皮纤维因结合过快而出现表面过鞣的现象;另外,双子表面活性剂既能显著降低溶液的表面能又可以加速鞣剂的渗透,达到速鞣、鞣制均匀或提高结合量使成革丰满的目的。 双子表面活性剂是由联结基团通过化学键将两个或多个单体表面活性剂连接在一起,扩充其链结构增加分子量,同时与胶原或鞣剂进行多点结合,从而使得它还可以作为复鞣填充剂。加脂剂是制革过程中用量最大的一类皮革化工产品,磺酸盐型皮革加脂剂是最主要的品种之一[19]。张辉等[20]制备出一种双子表面活性剂聚马来酸酐脂肪醇单酯钠盐(PMAMS),并使用柔软度测定仪对其皮革加脂性能进行了测定,结果表明这种双子表面活性剂具有良好的皮革加脂性能。 3.3匀染剂和染色助剂 双子表面活性剂具有优良的分散性和高渗透性,用于皮革的染色过程中,可取得很好的匀染和助染效果。高渗透性使其能快速地与皮革纤维结合,从而达到缓染的效果。双子表面活性剂的结构独特,带有大量的亲纤维性基团或亲染料性基团。因此,双子表面活性剂具有良好的助染性能。  

你可能想看:

有话要说...

取消
扫码支持 支付码