当前位置:首页 > 教育 > 正文

高考物理一轮复习专题之《曲线运动》核心知识点汇总

第一节 曲线运动 运动的合成与分解

【基本概念、规律】

一、曲线运动

1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.

2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.

3.曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.

二、运动的合成与分解

1.运算法则

位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.

2.合运动和分运动的关系

(1)等时性:合运动与分运动经历的时间相等.

(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响.

(3)等效性:各分运动叠加起来与合运动有完全相同的效果.

【重要考点归纳】

考点一 对曲线运动规律的理解

1.曲线运动的分类及特点

(1)匀变速曲线运动:合力(加速度)恒定不变.

(2)变加速曲线运动:合力(加速度)变化.

2.合外力方向与轨迹的关系

物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧.

3.速率变化情况判断

(1)当合力方向与速度方向的夹角为锐角时,速率增大;

(2)当合力方向与速度方向的夹角为钝角时,速率减小;

(3)当合力方向与速度方向垂直时,速率不变.

考点二 运动的合成及合运动性质的判断

1.运动的合成与分解的运算法则

运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则.

2.合运动的性质判断

4.在解决运动的合成问题时,先确定各分运动的性质,再求解各分运动的相关物理量,最后进行各量的合成运算.

【思想方法与技巧】

两种运动的合成与分解实例

一、小船渡河模型

1.模型特点

两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型.

2.模型分析

(1)船的实际运动是水流的运动和船相对静水的运动的合运动.

3.求解小船渡河问题的方法

求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下三点:

(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动;船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.

(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解.

(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.

二、绳(杆)端速度分解模型

1.模型特点

绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型.

第二节 抛体运动

【基本概念、规律】

一、平抛运动

1.性质:平抛运动是加速度恒为重力加速度g的匀变速曲线运动,轨迹是抛物线.

2.规律:以抛出点为原点,以水平方向(初速度v0方向)为x轴,以竖直向下的方向为y轴建立平面直角坐标系,则

【重要考点归纳】

考点一 平抛运动的基本规律及应用

5.两个重要推论

(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A点和B点所示.

(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.

6.“化曲为直”思想在抛体运动中的应用

(1)根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解.

(2)运用运动合成的方法求出平抛运动的速度、位移等.

考点二 与斜面相关联的平抛运动

1.斜面上的平抛问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下:

2.与斜面有关的平抛运动问题分为两类:

(1)从斜面上某点抛出又落到斜面上,位移与水平方向夹角等于斜面倾角;

(2)从斜面外抛出的物体落到斜面上,注意找速度方向与斜面倾角的关系.

考点三 与圆轨道关联的平抛运动

在竖直半圆内进行平抛时,圆的半径和半圆轨道对平抛运动形成制约.画出落点相对圆心的位置,利用几何关系和平抛运动规律求解.

平抛运动的临界问题

(1)在解决临界和极值问题时,正确找出临界条件(点)是解题关键.

第三节 圆周运动

【基本概念、规律】

一、描述圆周运动的物理量

三、离心运动

1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动.

2.供需关系与运动

【重要考点归纳】

考点一 水平面内的圆周运动

1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.

2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零.

3.涉及静摩擦力时,常出现临界和极值问题.

4.水平面内的匀速圆周运动的解题方法

(1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件;

(2)确定圆周运动的圆心和半径;

(3)应用相关力学规律列方程求解.

考点二 竖直面内的圆周运动

1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.

2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒.

3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题.

4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形.

考点三 圆周运动的综合问题

圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手:

1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系.

2.分析每个运动过程的受力情况和运动性质,明确遵守的规律.

3.平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速等于平抛运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度.

【思想方法与技巧】

竖直平面内圆周运动的“轻杆、轻绳”模型

1.模型特点

在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.

2.模型分析

绳、杆模型常涉及临界问题,分析如下:

3.竖直面内圆周运动的求解思路

(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.

你可能想看:

有话要说...

取消
扫码支持 支付码