当前位置:首页 > 娱乐 > 正文

揭秘:宇宙大爆炸是怎样产生的(组图)

2015-12-25 14:19 ·

1932年勒梅特首次提出了现代宇宙大爆炸理论:整个宇宙最初聚集在一个“原始原子”中,后来发生了大爆炸,碎片向四面八方散开,形成了我们的宇宙。从此之后,大爆炸理论成为众多科学家争论的焦点。宇宙大爆炸仅仅是一种学说,是根据天文观测研究后得到的一种设想。下面就和趣闻解密小编去了解一下宇宙大爆炸之谜吧。

大约在150亿年前,宇宙所有的物质都高度密集在一点,有着极高的温度,因而发生了巨大的爆炸。大爆炸以后,物质开始向外大膨胀,就形成了今天我们看到的宇宙。大爆炸的整个过程是复杂的,现在只能从理论研究的基础上描绘过去远古的宇宙发展史。在这150亿年中先后诞生了星系团、星系、我们的银河系、恒星、太阳系、行星、卫星等。现在我们看见的和看不见的一切天体和宇宙物质,形成了当今的宇宙形态,人类就是在这一宇宙演变中诞生的。宇宙大爆炸时间表从1948年伽莫夫建立热大爆炸的观念以来,通过几十年的努力,宇宙学家们为我们勾画出这样一部宇宙历史:

大爆炸开始时 约137亿年前,极小体积,极高密度,极高温度。大爆炸后0.01秒 1000亿度,光子、电子、中微子为主,质子中子仅占10亿分之一,热平衡态,体系急剧膨胀,温度和密度不断下降。大爆炸后10^-43秒宇宙从量子背景出现。大爆炸后10^-35秒 引力分离,夸克、玻色子、轻子形成。大爆炸后0.1秒后 300亿度,中子质子比从1.0下降到0.61。大爆炸后1秒后 100亿度,中微子向外逃逸,正负电子湮没反应出现,核力尚不足束缚中子和质子。

大爆炸后5-10秒 10亿度,质子和中子形成。大爆炸后13.8秒后 30亿度,氢、氦类稳定原子核(化学元素)形成。大爆炸后35分钟后 3亿度,原初核反应过程停止,尚不能形成中性原子。大爆炸后30万年后 3000度,化学结合作用使中性原子形成,宇宙主要成分为气态物质,并逐步在自引力作用下凝聚成密度较高的气体云块,直至恒星和恒星系统。

宇宙大爆炸的观测证据宇宙大爆炸理论最早也最直接的观测证据包括从星系红移观测到的哈勃膨胀、对宇宙微波背景辐射的精细测量、宇宙间轻元素的丰度,而今大尺度结构和星系演化也成为了新的支持证据。这四种观测证据有时被称作“大爆炸理论的四大支柱”。

哈勃定律对遥远星系和类星体的观测表明这些天体存在红移——从这些天体发出的电磁波波长会变长。通过观测取得星体的频谱,而构成天体的化学元素的原子与电磁波的相互作用对应着特定样式的吸收和发射谱线,将两者进行比对则可发现这些谱线都向波长更长的一端移动。这些红移是均匀且各向同性的,也就是说在观测者看来任意方向上的天体都会发生均匀分布的红移。如果将这种红移解释为一种多普勒频移,则可进而推知天体的退行速度。对于某些星系,它们到地球的距离可以通过宇宙距离尺度来估算出。如果将各个星系的退行速度和它们到地球的距离一一列出,则可发现两者存在一个线性关系即哈勃定律:

v=HD,其中:v 是星系或其他遥远天体的退行速度;D 是距天体的共动固有距离;H 是哈勃常数,根据WMAP最近的测量结果为70.1 ±1.3千米/秒/秒差距。

宇宙膨胀根据哈勃定律我们的宇宙图景有两种可能:或者我们正处于空间膨胀的正中央,从而所有的星系都在远离我们——这与哥白尼原理相违背——或者宇宙的膨胀是各处都相同的。从广义相对论推测出宇宙正在膨胀的假说是由亚历山大·弗里德曼和乔治·勒梅特分别在1922年和1927年各自提出的,都要早于哈勃在1929年所进行的实验观测和分析工作。宇宙膨胀的理论后来成为了弗里德曼、勒梅特、罗伯逊、沃尔克等人建立大爆炸理论的基石。

大爆炸理论要求哈勃定律在任何情况下都成立,注意这里v、D和H随着宇宙膨胀都在不断变化(因此哈勃常数H实际是指“当前状态下的哈勃常数”)。对于距离远小于可观测宇宙尺度的情形,哈勃红移可以被理解为因退行速度v造成的多普勒频移,但本质上哈勃红移并不是真正的多普勒频移,而是在光从遥远星系发出而后被观测者接收的这个时间间隔内,宇宙膨胀的结果。

天文学上观测到的高度均匀分布且各向同性的红移,以及其他很多观测证据,都支持着宇宙在各个方向上看起来都相同这一宇宙学原理。2000年,人们通过测量宇宙微波背景辐射对遥远天体系统的动力学所产生的影响,证实了哥白尼原理,即地球相对大尺度宇宙来说绝非宇宙的中心。早期宇宙来自大爆炸的微波背景辐射温度要显著高于当今的辐射余温,而几十亿年来微波背景辐射均匀降温的事实只能被解释为宇宙空间正在进行着度规膨胀,并排除了我们较为接近一个特殊的爆炸中心的可能。

微波辐射在宇宙诞生的最初几天里,宇宙处于完全的热平衡态,并伴随有光子的不断吸收和发射,从而产生了一个黑体辐射的频谱。其后随着宇宙的膨胀,温度逐渐降低到光子不能继续产生或湮灭,不过此时的高温仍然足以使电子和原子核彼此分离。因而,此时的光子不断地被这些自由电子“反射”,这一过程的本质是汤姆孙散射。由于这种散射的持续存在,早期宇宙对电磁波是不透明的。当温度继续降低到几千开尔文时,电子和原子核开始结合成原子,这一过程在宇宙学中称为复合。

由于光子被中性原子散射的几率很小,当几乎所有电子都与原子核发生复合之后,光子的电磁辐射与物质脱耦。这一时期大约发生在大爆炸后三十七万九千年,被称作“最终的散射”时期。这些光子构成了可以被今天人们观测到的背景辐射,而观测到的背景辐射的涨落图样正是这一时期的早期宇宙的直接写照。随着宇宙的膨胀,光子的能量因红移而随之降低,从而使光子落入了电磁波谱的微波频段。微波背景辐射被认为在宇宙中的任何一点都可被观测,并且在各个方向上都(几乎)具有相同的能量密度。

1964年,阿诺·彭齐亚斯和罗伯特·威尔逊在使用贝尔实验室的一台微波接收器进行诊断性测量时,意外发现了宇宙微波背景辐射的存在。他们的发现为微波背景辐射的相关预言提供了坚实的验证——辐射被观测到是各向同性的,并且对应的黑体辐射温度为3K——并为大爆炸假说提供了有力的证据。彭齐亚斯和威尔逊为这项发现获得了诺贝尔物理学奖。

1989年,NASA发射了宇宙背景探测者卫星(COBE),并在1990年取得初步测量结果,显示大爆炸理论对微波背景辐射所做的预言和实验观测相符合。COBE测得的微波背景辐射余温为2。726K,并在1992年首次测量了微波背景辐射的涨落(各向异性),其结果显示这种各向异性在十万分之一的量级。约翰·马瑟和乔治·斯穆特因领导了这项工作而获得诺贝尔物理学奖。在接下来的十年间,微波背景辐射的各向异性被多个地面探测器以及气球实验进一步研究。2000年至2001年间,以毫米波段气球观天计划为代表的多个实验通过测量这种各向异性的典型角度大小,发现宇宙在空间上是近乎平直的。

2003年初,威尔金森微波各向异性探测器(WMAP)给出了它的首次探测结果,其中包括了在当时人们所能获得的最精确的某些宇宙学参数。航天器的探测结果还否定了某些具体的宇宙暴涨模型,但总体而言仍然符合广义的暴涨理论。

此外,WMAP还证实了有一片“中微子海”弥散于整个宇宙,这清晰地说明了最早的一批恒星诞生时曾经用了约五亿年的时间才形成所谓宇宙雾,从而开始在原本黑暗的宇宙中发光。2009年5月,普朗克卫星作为用于测量微波背景各向异性的新一代探测器发射升空,它被寄希望于能够对微波背景的各向异性进行更精确的测量,除此之外还有很多基于地面探测器和气球的观测实验也在进行中。

原始物质丰度采用大爆炸模型可以计算氦-4、氦-3、氘和锂-7等轻元素相对普通氢元素在宇宙中所占含量的比例。所有这些轻元素的丰度都取决于一个参数,即早期宇宙中辐射(光子)与物质(重子)的比例,而这个参数的计算与微波背景辐射涨落的具体细节无关。大爆炸理论所推测的轻元素比例(注意这里是元素的总质量之比而非数量之比)大约为:氦-4/氢= 0。25,氘/氢= 10^-3,氦-3/氢= 10^-4,锂-7/氢= 10^-7。

将实际测量到的各种轻元素丰度和从光子重子比例推算出的理论值两者比较,可以发现至少是粗略符合。其中理论值和测量值符合最好的是氘元素,氦-4的理论值和测量值接近但仍有差别,锂-7则是差了两倍,即对于后两种元素的情形存在着明显的系统随机误差。尽管如此,大爆炸核合成理论所预言的轻元素丰度与实际观测可以认为是基本符合,这是对大爆炸理论的强有力支持。

因为到目前为止还没有第二种理论能够很好地解释并给出这些轻元素的相对丰度,而从大爆炸理论所预言的宇宙中可被“调控”的氦元素含量也不可能超出或低于现有丰度的20%至30%。事实上很多观测也没有除大爆炸以外的理论可以解释,例如为什么早期宇宙(即在恒星形成之前,从而对物质的研究可以排除恒星核合成的影响)中氦的丰度要高于氘,而氘的含量又要高于氦-3,而且比例又是常数。

星系演变对星系和类星体的分类和分布的详细观测为大爆炸理论提供了强有力的支持证据。理论和观测结果共同显示,最初的一批星系和类星体诞生于大爆炸后十亿年,从那以后更大的结构如星系团和超星系团开始形成。由于恒星族群不断衰老和演化,我们所观测到的距离遥远的星系和那些距离较近的星系非常不同。

此外,即使距离上相近,相对较晚形成的星系也和那些在大爆炸之后较早形成的星系存在较大差异。这些观测结果都和宇宙的稳恒态理论强烈抵触,而对恒星形成、星系和类星体分布以及大尺度结构的观测则通过大爆炸理论对宇宙结构形成的计算模拟结果符合得很好,从而使大爆炸理论的细节更趋完善。

其他证据人们通过对哈勃膨胀以及对微波背景辐射的观测,分别估算出了宇宙的年龄。虽然这两个结果彼此曾经存在一些矛盾和争议,但最终还是取得了相当程度上的一致:两者都认为宇宙的年龄要稍大于最老的恒星的年龄。两者的测量方法都是将恒星演化理论应用到球状星团上,并用放射性定年法测定每一颗第二星族恒星的年龄。

大爆炸理论预言了微波背景辐射的温度在过去曾经比现在要高,而对于位于高红移区域(即距离很远)的气体云,通过观测它们对温度敏感的发射谱线已经证实了这个预言。这个预言也意味着星系团中苏尼亚耶夫-泽尔多维奇效应的强度与红移并不直接相关;这一点从目前观测来看应该是近似正确,然而由于苏尼亚耶夫-泽尔多维奇效应的强度还和星系团的本身性质直接关联,并且星系团的性质在宇宙学的时间尺度上会发生根本的变化,因而导致无法精确检验这个猜想的正确性。

宇宙大爆炸的疑点当今的科学家在宇宙学问题上都普遍更青睐大爆炸模型,不过在历史上科学界曾经分成两派,一派是大爆炸模型的支持者,另一派是其他替代宇宙模型的支持者。在宇宙学的整个发展史中,科学界曾经不断争论着哪个宇宙学模型能够最符合地描述宇宙学的观测结果(参见动机和发展一节),大爆炸理论的一些问题也因此浮出水面。在当今的科学界,支持大爆炸理论是压倒性的共识,因此这些曾经提出的问题很多都已经成为了历史,人们为此不断修正和完善大爆炸理论以及获取更佳的观测结果,从而一一获得了这些问题的解释。

大爆炸的核心观点——包括度规膨胀、早期高温态、氦元素形成、星系形成——都是从独立于任何宇宙学模型的实际观测中推论出的,这些实际观测包括轻元素的丰度、宇宙微波背景辐射、大尺度结构、Ia型超新星的哈勃图等。而大爆炸理论发展至今,它的正确性和精确性有赖于很多奇特的物理现象,这些物理现象或者还没有在地面实验中观测到,或者还没被纳入粒子物理学的标准模型中。

在这些现象中,暗物质是当前各个实验室所研究的最为活跃的主题。虽然暗物质理论中至今仍然存在一些未得到解决的细节和疑点,诸如星系晕尖点问题和冷暗物质的矮星系问题,但这些疑点的解决只需将来对理论做出进一步的修正,而不会对暗物质这一解释产生颠覆性的影响。暗能量是科学界另一高度关注的领域,但至今仍然不清楚将来是否有可能直接对暗能量进行观测。

另一方面,大爆炸模型中的两个重要概念:暴涨和重子数产生,在某种意义上仍然被认为是具有猜测性质的。它们虽然能够解释早期宇宙的重要性质,却可以被其他解释所替代而不影响大爆炸理论本身。如何找到这些观测现象的正确解释仍然是当今物理学最大的未解决问题之一。

视界问题

视界问题来源于任何信息的传递速度不可能超过光速的前提。对于一个存在有限时间的宇宙而言,这个前提决定了两个具有因果联系的时空区域之间的间隔具有一个上界,这个上界被称作粒子视界。从这个意义上看,所观测到的微波背景辐射的各向同性与这个推论存在矛盾:如果早期宇宙直到“最终的散射”时期之前一直都被物质或辐射主导,那时的粒子视界将只对应着天空中大约2度的范围,从而无法解释为何在一个如此广的范围内都具有相同的辐射温度以及如此相似的物理性质。

对于这一看似矛盾之处,暴涨理论给出了解决方案,它指出在宇宙诞生极早期(早于重子数产生)的一段时间内,宇宙被均匀且各向同性的能量标量场主导着。在暴涨过程中,宇宙空间发生了指数膨胀,而粒子视界的膨胀速度要远比原先预想的要快,从而导致现在处于可观测宇宙两端的区域完全处于彼此的粒子视界中。从而,现今观测到的微波背景辐射在大尺度上的各向同性是由于在暴涨发生之前,这些区域彼此是相互接触而具有因果联系的。

根据海森堡的不确定性原理,在暴涨时期宇宙中存着微小的量子热涨落,随着暴涨这些涨落被放大到宇观尺度,这就成为了当今宇宙中所有结构的种子。暴涨理论预言这些原初涨落基本上具有尺度不变性并满足高斯分布,这已经通过测量微波背景辐射得到了精确的证实。如果暴涨的确发生过,宇宙空间中的大片区域将因指数膨胀而完全处于我们可观测的视界范围以外。

平坦性问题平坦性问题是一个与弗里德曼-勒梅特-罗伯逊-沃尔克度规相关的观测问题。取决于宇宙的总能量密度是否大于、小于或等于临界密度,宇宙的空间曲率可以是正的、负的或为零的。当宇宙的能量密度等于临界密度时,宇宙空间被认为是平坦的。然而问题在于,任何一个偏离临界密度的微小扰动都会随着时间逐渐放大,但至今观测到的宇宙仍然是非常平坦的。

如果假设空间曲率偏离平坦所经的时间尺度为普朗克时间即10^-43秒,经过几十亿年的演化宇宙将会进入热寂或大挤压状态,这一矛盾从而需要一个解释。事实上,即使是在太初核合成时期,宇宙的能量密度也必须在偏离临界密度不超过10^-14倍的范围内,否则将不会形成像我们今天看到的这样。

暴涨理论对此给出的解释为,暴涨时期空间膨胀的速度如此之快,以至于能够将产生的任何微小曲率都抹平。现在普遍认为暴涨导致了现今宇宙空间的高度平坦性,并且其能量密度非常接近临界密度值。

磁单极子问题关于磁单极子的反对意见源于二十世纪七十年代末,大统一理论预言了空间中的拓扑缺陷将表现为磁单极子,这种缺陷在早期高温宇宙中应当大量产生,从而导致现今磁单极子的密度应当远大于所能观测到的结果。而非常难以理解的是,至今为止人们从未观测到任何磁单极子。解决这一矛盾的理论仍然是暴涨,与抹平空间中的曲率相类似,空间呈指数暴涨也消除了所有拓扑缺陷。

值得一提的是,外尔曲率假说作为暴涨理论的替代理论,同样能够解释视界问题、平坦性问题和磁单极子问题。

重子不对称性至今人们还不理解为什么宇宙中的物质要比反物质多:大爆炸理论认为高温的早期宇宙处在统计平衡态,具有同样数量的重子和反重子;然而观测表明,即使是在非常遥远的地方,宇宙仍然几乎由物质构成。产生这种不对称性的未知过程称作重子数产生,而重子数产生的条件是所谓Sakharov条件必须满足。这些条件包括存在一种过程破坏重子数守恒、电荷共轭不变性和电荷共轭-空间反演不变性必须被破坏、宇宙偏离热平衡态。这三个条件在标准模型的框架内都可得到满足,然而标准模型所预言的此种效应在数量上太小,不足以完全解释重子不对称性的由来。

球状星团年龄二十世纪九十年代中期,人们发现对球状星团的观测结果与大爆炸理论出现矛盾:,人们进行了和球状星团的星族观测相符的计算机模拟,其结果显示这些球状星团的年龄竟然高达150亿年,这与大爆炸理论所预言的宇宙的年龄为137亿年严重不符。九十年代后期,更完善的计算机模拟考虑了恒星风引起的质量损失效应,这一矛盾也基本得到了解决:最新得出的球状星团年龄要比原先的结果小很多。虽然人们还不确定这种方法测定的球状星团年龄到底有多精确,但已经明确的是它们无疑是宇宙中最古老的天体之一。

暗物质二十世纪七十至八十年代进行的多种观测显示,宇宙中可见的物质含量不足以解释所观测到的星系内部以及星系之间彼此产生的引力强度。这就导致了科学家猜测宇宙中有含量多达90%的物质都属于不会辐射电磁波也不会与普通重子物质相互作用的暗物质。另一方面,若假设宇宙中的大多数物质都是普通重子物质,所得出的一些预言也和观测结果强烈矛盾。例如,如果不假设暗物质的存在,将难以解释为何宇宙中氘的实际含量要比理论上预计的低很多。尽管暗物质这一概念在刚提出时还存在争议,但有多种观测都显示了它的存在,包括微波背景辐射的各向异性、星系团的速度弥散、大尺度结构的分布、对引力透镜的研究、对星系团的X射线观测等。

如要证实暗物质的存在,需要借助它与其他物质的引力相互作用,但至今还没有在实验室中发现构成暗物质的粒子。至今物理学家已经提出了多种粒子物理学理论来试图解释暗物质,同时实验上也存在多个直接实验观测暗物质的探测计划。

暗能量对Ia型超新星红移-星等之间关系的测量揭示了宇宙自现有年龄的一半时,它的膨胀开始加速。如要解释这种加速膨胀,广义相对论要求宇宙中的大部分能量都具有一个能够提供负压的因子,即所谓“暗能量”。有其他若干证据显示暗能量确实存在:对微波背景辐射的测量显示宇宙空间是近乎平直的,从而宇宙的能量密度需要非常接近临界密度;然而通过引力汇聚对宇宙质量密度的测量表明,宇宙的能量密度只有临界密度的30%左右。由于暗能量并不像普通质量那样发生正常的引力汇聚,它是对那部分“丢失”的能量密度的最好解释。

此外有两种对宇宙总曲率的几何测量结果也要求了暗能量的存在,一种借助了引力透镜的频率,另一种则是利用大尺度结构的特征图样作为量天尺。负压是真空能量的一种性质,但暗能量的本性到底是什么仍然是大爆炸理论的最大谜团之一。

目前提出的用于解释暗能量的候选者包括宇宙学常数和第五元素。2008年WMAP团队给出了结合宇宙微波背景辐射和其他观测数据的结果,显示当今的宇宙含有72%的暗能量、23%的暗物质、4。6%的常规物质和少于1%的中微子。其中常规物质的能量密度随着宇宙的膨胀逐渐减少,而暗能量的能量密度却(几乎)保持不变。从而宇宙过去含有的常规物质比例比现在要高,而在未来暗能量的比例则会进一步升高。

在ΛCDM这一当前大爆炸理论的最佳模型中,暗能量被解释为广义相对论中的宇宙学常数。然而,基于广义相对论并能够合理解释暗能量的宇宙学常数值,即使与基于量子引力观点的不成熟估算值比起来仍然令人惊讶地小。在宇宙学常数以及其他解释暗能量的替代理论之间做出比较和选择是当前大爆炸研究领域中活跃的课题之一。

大爆炸宇宙的未来在发现暗能量之前,宇宙学家认为宇宙的未来存在有两种图景:如果宇宙能量密度超过临界密度,宇宙会在膨胀到最大体积之后坍缩,在坍缩过程中,宇宙的密度和温度都会再次升高,最后终结于同爆炸开始相似的状态——即大挤压;相反,如果宇宙能量密度等于或者小于临界密度,膨胀会逐渐减速,但永远不会停止。

恒星形成会因各个星系中的星际气体都被逐渐消耗而最终停止;恒星演化最终导致只剩下白矮星、中子星和黑洞。相当缓慢地,这些致密星体彼此的碰撞会导致质量聚集而陆续产生更大的黑洞。宇宙的平均温度会渐近地趋于绝对零度,从而达到所谓大冻结。此外,倘若质子真像标准模型预言的那样是不稳定的,重子物质最终也会全部消失,宇宙中只留下辐射和黑洞,而最终黑洞也会因霍金辐射而全部蒸发。宇宙的熵会增加到极点,以致于再也不会有自组织的能量形式产生,最终宇宙达到热寂状态。

现代观测发现宇宙加速膨胀之后,人们意识到现今可观测的宇宙越来越多的部分将膨胀到我们的事件视界以外而同我们失去联系,这一效应的最终结果还不清楚。在ΛCDM模型中,暗能量以宇宙学常数的形式存在,这个理论认为只有诸如星系等引力束缚系统的物质会聚集,并随着宇宙的膨胀和冷却它们也会到达热寂。对暗能量的其他解释,例如幻影能量理论则认为最终星系群、恒星、行星、原子、原子核以及所有物质都会在一直持续下去的膨胀中被撕开,即所谓大撕裂。

关于宇宙诞生的其他理论虽然在宇宙学中大爆炸模型已经建立得相当完善,在将来它仍然非常有可能被修正,例如对于宇宙诞生最早期的那一刻人们还几乎一无所知。彭罗斯-霍金奇点定理表明,在宇宙时间的开端必然存在一个奇点。但是,这些理论都是在广义相对论正确的前提下才成立,而广义相对论在宇宙达到普朗克温度之前必须失效,而一个可能存在的量子引力理论则有希望避免产生奇点。

你可能想看:

有话要说...

取消
扫码支持 支付码