第11讲实验性研究分类数据统计策略(1):
两组率比较的统计方法
系列课程“SPSS教程”1-10讲为实验性定量数据统计分析策略。从第11文开始,介绍实验性分类数据结局的基本统计分析方法。
分类结局包括这两种形式,一种无序分类的结局,一种是有序分类结局。无序分类结局又包括二分类结局和多分类结局。
本文的内容是二分类结局的分析。二分类结局往往以率的形式开展描述,因此统计分析探讨的是率有无差异。
实例分析
吲达帕胺片治疗原发性高血压疗效,将患者随机分为两组。试验组用吲达帕胺片加辅助治疗,对照组用安慰剂加辅助治疗。试分析两组率有无统计学差异?数据详见ht.sav
思考
这个案例需要思考:
-该研究属于何种类型的研究设计?
-结局变量属于什么类型的变量?
-分组数是多少?
-正态性问题如何考虑?
案情分析
本案例结局为疗效为二分类结局。该结局开展描述时计算有效率,比如治疗组有效率、对照组有效率等。分组变量为处理因素,分为2个水平:吲达帕胺片组和安慰剂组。
如此数据,在统计描述上,可以绘制出三线表
该研究核心数据有2行2列(红框内),因此称之为2*2行列表或者交叉表资料。此外,由于红框中的结果在表格中占据4个单元格(a、b、c、d),这样的交叉表资料被俗称为四格表资料。
一般来说,分析四格表资料就等同于分析两个率的差异性。
最后,两组率的差异分析,不考虑正态性问题。
统计分析策略
两个率的差异如何分析呢?基本统计学方法有三类:z检验、卡方检验和Fisher确切概率法。最常见的就是卡方检验(c2检验,Chi-square)和Fisher确切概率法。
卡方检验是统计学奠基人Kar-Pearson百年前提出,其基本理论是比较理论值(期望值)和实际值的吻合程度来探讨不同样本是否来源于同一个总体。具体原理不再赘述。Fisher确切概率法是另外一位统计学奠基人Fisher提出,主要基于二项分布和二项分布函数,计算极端事件发生概率是否属于小概率事件的一种方法。
总结来说,
具体来说,采用卡方检验还是Fisher确切概率法,一般有如下考虑:
1.如果整个研究样本量≥40,四个单元格(a,b,c,d)的理论值T,又称期望值,(expectation)都大于或等于5,则可采用卡方检验进行比较。
n≥40,且T ≥ 5,卡方检验
2.如果整个研究样本量≥40 ,四个单元格(a,b,c,d)的理论值T(期望值,expectation)至少有一个在1-5之间,普通的卡方检验的结果不太可靠,需要对卡方检验方法进行改进,采用校正卡方检验进行比较。
n≥40,且至少一个1≤T <5,校正卡方检验
3.如果整个研究样本量<40,或者四个单元格(a,b,c,d)的理论值T(期望值,expectation)至少小于1,则无论卡方或者校正卡方都不可靠,须采用Fisher确切概率法。
n<40或至少1个T <1 ,Fisher确切概率法
值得注意的是,上述方法均为我国教材流传至今的常规操作。实际工作可便宜行事,具体可见最后的讨论。
如何利用SPSS进行卡方和Fisher确切法检验
卡方和Fisher检验入口界面
分析-描述统计-交叉表
卡方和Fisher检验检验对话框
在“交叉表”对话框中,分别选择分组变量和结局变量到“行”和“列”中。
①、②:行”和“列”分别放哪个变量没有规定,结果是一致的(分组变量可以放“行”,也可以放“列”中)。一般建议与最后论文报告中的行列方向一致。
③精确:点击选择“精确”选项,进行Fisher检验
④统计:选择“卡方”,进行卡方检验
⑤单元格:可进行计算①实际频数(必选)和期望频数(可选,不建议选择),②选择计算百分比中的行与列,不必同时选择,选择一项即可,一般和交叉表的分组变量的放入行”“列”位置一致。
统计分析结果与解释
结果主要为2张表格。
第1表:分组统计描述结果,分别给出试验组和对照组的各自的结局,包括发生数以及相应的百分比。
第2表:卡方和Fisher确切检验的结果。该结果同时展示了卡方、校正卡方、和Fisher确切概率分析结果,也显示了总样本量、理论(期望)频数的情况。
阅读表格,首先要关注总样本量和理论(期望)频数。总样本量在表格最后一行①:有效个案数。需要关注是否≥40。理论(期望)频数在表格下方第一个注释a②。注释前半句说的是多少单元格期望数小于5,这半句将决定是否采用卡方检验;后半句指出最小期望数,将决定是否采用Fisher法。
卡方检验,当n≥40,且T ≥ 5,选择第一行的“皮尔逊卡方”①,卡方值②,选择P值(渐进显著性双侧)③。
校正卡方检验,n≥40,且至少一个1≤T <5,选择第二行“连续性修正”①,
,卡方值②,选择P值(渐进显著性双侧)③。
Fisher确切概率法,n<40或至少1个T <1 ,选择第四行的“费希尔精确检验”①,选择值(精确显著性双侧)②。
对于本例,样本量70,0单元格(0%)期望计数小5,最小为10.77,应选择一般的卡方检验,卡方值8.399,P=0.004。两组人群的有效率存在着统计学差异。
结果及表格的规范表达
规范的统计表(其中一种形式)为:
提醒:和均数一样,率也建议计算置信区间。怎么计算?系列文章将很快推出!
拓展知识
1. 两组率的比较方法,基于Poisson 分布检验了解下?
除了本文介绍的常规二分类结局,有些医学研究的结局是罕见事件的结局(肿瘤的发病、出生缺陷发生率等)。例如,开展以下两个率的比较,试验组和对照组发生率分别为6.7/10万,5.0 /十万。
二分类数据中,阳性事件数的分布属于二项分布,而当率非常低时,阳性事件数(例如本例的发生数)分布可视为另一个特殊的分布:泊松(Poisson)分布。
泊松分布数据的比较有相应的检验方法,但SPSS软件不好实现,可通过R语言快速实现假设检验,这里展示一下R语言程序和结果
①R语言程序
poisson.test(c(30,10), c(300000,200000),
alternative = c("two.sided"),
conf.level = 0.95)
②R语言分析结果。
2.Fisher方法不是两个率比较的辅助方法上文写到,Fisher方法应用条件是n<40或至少1个T <1 。实际上,这一条件可以放宽。理论上,Fisher方法可以使用在所有分类数据的比较上,当然也包括四格表资料,而且它的结果更为精确。所以不要觉得Fisher是配角,Fisher使用没有条件限制。
那为什么一直以来卡方检验更常见而不是Fisher法呢?部分原因是计算能力的问题,Fisher对计算机的性能要求较高。Fisher很难人工进行运算,或者早些年在计算机运算能力较弱的时,Fisher法会卡壳!而卡方就没有这个问题,而且大样本时卡方检验结果和Fisher几乎一致。所以,之前教材一直推崇卡方而不是Fisher。现在情况不同了,一般软件都能应付大部分的Fisher检验。所以不要被“n<40或至少1个T <1”条件限制,不要觉得达不到这个条件Fisher结果不正确。比如一篇小样本研究的论文,按照四格表统计分析的条件,有一些需要卡方、有一些需要校正卡方、有一些是Fisher法,为了统一,全部用Fisher方法,也没有任何问题的,只要SPSS能够给出Fisher的结果。
特别是, 当卡方检验P值在0.05附近时, 更推荐Fisher法。 因为Fisher结果更精确,它能够真正判断一项研究P值到底>0.05,还是<0.05。 总结起来,卡方受条件限制,而Fisher不受数据限制,只受计算机运算能力限制,很多时候,Fisher方法可以成为主角。SPSS 课程视频和操作录屏
SPSS课程视频
带字幕去水印的视频可复制以下地址浏览器打开SPSS课程录屏
-本讲结束-
SPSS教程(点击相应链接学习)
3. 正态性检验(、SPSS简版、)
4. 两样本t检验(、、)
5.两样本秩和检验(、、)
6. 多样本F检验(、)
7. 多重比较(SPSS详版、SPSS简版、R语言版)
8. 随机区组方差分析()
9.小统计大文章(上)()
10.小统计大文章(下)()
课程资料包括视频、讲义、练习数据集、R语言代码可通过关注公众号,发送关键词“SPSS”至公众号,即可获得免费下载。课程资料将随文章同期更新
本公众号在传播统计学知识的同时,也放置了一些常用的资源来方便大家科研。所 有资源全部免费下载,有兴趣的朋友可以关注下载。1.
3.
5.
6.
。
9.
10.
有话要说...