第1章递归问题
1.1河内塔
1.2平面上的直线
1.3约瑟夫问题
习题
第2章和式
2.1记号
2.2和式和递归式
2.3和式的处理
2.4多重和式
2.5一般性的方法
2.6有限微积分和无限微积分
2.7无限和式
习题
第3章整值函数
3.1底和顶
3.2底和顶的应用
3.3底和顶的递归式
3.4mod:二元运算
3.5底和顶的和式
习题
第4章数论
4.1整除性
4.2素数
4.3素数的例子
4.4阶乘的因子
4.5互素
4.6mod:同余关系
4.7独立剩余
4.8进一步的应用
4.9函数和函数
习题
第5章二项式系数
5.1基本恒等式
5.2基本练习
5.3处理的技巧
5.4生成函数
5.5超几何函数
5.6超几何变换
5.7部分超几何和式
5.8机械求和法
习题
第6章特殊的数
6.1斯特林数
6.2欧拉数
6.3调和数
6.4调和求和法
6.5伯努利数
6.6斐波那契数
6.7连项式
习题
第7章生成函数
7.1多米诺理论与换零钱
7.2基本策略
7.3解递归式
7.4特殊的生成函数
7.5卷积
7.6指数生成函数
7.7狄利克雷生成函数
习题
第8章离散概率
8.1定义
8.2均值和方差
8.3概率生成函数
8.4抛掷硬币
8.5散列法
习题
第9章渐近式
9.1量的等级
9.2大O记号
9.3O运算规则
9.4两个渐近技巧
9.5欧拉求和公式
9.6最后的求和法
习题
附录A习题答案
附录B参考文献
附录C习题贡献者
译后记
索引
表索引
有话要说...