当前位置:首页 > 教育 > 正文

七年级几何模型汇总

我们可以发现很多压轴题的背景都是来源于教材中典型例题的变式。因此我们需要整理和归纳典型例题中隐含的模型,并且进行变式和推广,掌握其一般规律。

平行、角平分线与等腰三角形

本题是等腰三角形背景下的几何证明。出现的关键元素是“角平分线、平行线和等腰三角形”结合角平分线的性质、平行线的性质以及等腰三角形的性质(判定),其中任意两个量的组合能推出第三个量。


问题变式

等腰三角形的三线合一

等腰三角形的三线合一定理应用的背景是等腰三角形,当等腰三角形与顶角的平分线、底边上的高或底边上的中线任意一个条件组合时,能够推出另外两个。

注意:当顶角的平分线与底边上的中线/高组合时,不能直接得到两腰相等,必须通过全等进行证明。

一线三直角模型

本题是典型的“一线三直角模型”,如图,可以得到以下结论:①∠DBA=∠CAE,②∠BAD=∠ACE;③▲BDA≌▲ACE;④DE=BD+CE.

问题变式

“手拉手三角形”模型

问题背景 (1)‍‍‍‍‍‍‍‍

问题变式 1

随着点D的运动,始终有▲ABD≌▲ACE,CE//AB.

问题变式 2

问题背景 (2)

衍生结论

问题变式

“截长+补短”模型

本题的第一问是求∠AEB的度数,利用“两直线平行,同旁内角互补”以及“角平分线的性质”可以得到∠AEB=90°。

本题的第二问有两种做法:①截取(利用翻折的性质,截取往往应用于角平分线背景);②延长(利用中心对称的性质,往往应用于中点背景)

问题变式

你可能想看:

有话要说...

取消
扫码支持 支付码