图形运动主要包括以下四类:图形的对称、图形的平移、图形的旋转和图形的翻折。其中图形的对称包含轴对称图形和中心对称图形以及轴对称与中心对称。
图形的运动往往在中考16~18题的位置出现,常常考察的是图形的旋转、翻折和对称,而图形的平移往往结合二次函数考察(2018、2019以及2022上海中考24题都有涉及)。本节主要讨论的是图形的旋转、翻折和对称运动,平移运动和二次函数的结合可以点击下方链接进行跳转()。
知识梳理 图形的对称1 轴对称图形与中心对称图形
对于图形的运动问题,主要可以采取以下的方法进行解决:
(1)根据“运动”补全图形,利用图形运动的特点,找准对称中心或对称轴,画出完整的图形,才能进行分析。在画图时,还要注意动点的“落点”,如某条边(或延长线)、某个角的角平分线或四边形的对角线。
(2)挖掘“图形运动”背后的隐藏条件,这也是处理图形运动问题最重要也是最困难的一环。一般而言,处理“旋转问题”的突破口在于挖掘由旋转产生的“等腰三角形”,处理“翻折问题”的突破口常是判断“折痕”(即对称轴)在题中是角平分还是垂直平分线;
(3)在解决路径上,常常利用相似三角形的性质、解直角三角形或勾股定理进行突破。
图形运动学习视频
图形的平移
图形的旋转
图形的翻折
中考链接 图形的旋转 图形的翻折END
有话要说...