当前位置:首页 > 教育 > 正文

《算术与几何的妙趣》无穷与不可能

在一幅图画中展现无穷的不可能图形,看起来可能有些无聊。然而,这却能产生令人困惑的图像,让眼睛面临艰巨的考验。

如果物质世界里不存在无穷,既没有无穷大也没有无穷小,那么任何的无穷图形都将不存在。两条铁轨在地平线相交的景象,“科赫雪花”在任意尺度截取的轮廓,只会是近似描绘现实世界中缺失的数学无穷结构——对无穷的任何图形描述都会是幻想。

然而,物理学与宇宙学都没能确定地回答无穷是否实际存在。这个问题或许压根就不属于科学领域。若我们假设无穷在物理上是存在的,比如,因为空间本身并不是有界的或者封闭的(与球体表面相反),那么两条平行铁轨在无穷远相交便是可能发生的情景。

目前,我们仍然对最终的物质现实和物理上的无穷一无所知,因此,数学无穷结构的表现形式算不上荒谬。于是,我们可以放手设计一些抽象物体,它们除了具有无穷的属性,还因自身结构而成为不可能。

看到这儿,无穷似乎是一个无缘无故的数学游戏。然而近来,若干研究贡献使无穷不可能这门艺术变得更加有趣。这才是本章的主题。

最初,创造无穷不可能图形需要从有限不可能图形开始,例如潘洛斯三角形(不在同一平面的三条边看起来相连,构成一个不可能三角形),将其各部分相连,并规律地填满纸面上的空间,赋予图画表面上的一致性。(让·保罗·德拉耶)

你可能想看:

有话要说...

取消
扫码支持 支付码